Exploratory Data Analysis and Searching Cliques in Graphs

Author:

Hubai András1ORCID,Szabó Sándor2,Zaválnij Bogdán1ORCID

Affiliation:

1. Rényi Institute of Mathematics, 1053 Budapest, Hungary

2. Institute of Mathematics, University of Pécs, 7622 Pécs, Hungary

Abstract

The principal component analysis is a well-known and widely used technique to determine the essential dimension of a data set. Broadly speaking, it aims to find a low-dimensional linear manifold that retains a large part of the information contained in the original data set. It may be the case that one cannot approximate the entirety of the original data set using a single low-dimensional linear manifold even though large subsets of it are amenable to such approximations. For these cases we raise the related but different challenge (problem) of locating subsets of a high dimensional data set that are approximately 1-dimensional. Naturally, we are interested in the largest of such subsets. We propose a method for finding these 1-dimensional manifolds by finding cliques in a purpose-built auxiliary graph.

Funder

National Research, Development and Innovation Office—NKFIH Fund

National Laboratory for Health Security

Publisher

MDPI AG

Reference17 articles.

1. (2012). NIST/SEMATECH e-Handbook of Statistical Methods.

2. Tukey, J.W. (1977). Exploratory Data Analysis, Person.

3. We need both exploratory and confirmatory;Tukey;Am. Stat.,1980

4. Exploratory data analysis;Vigni;Data Handl. Sci. Technol.,2013

5. Baillie, M., Le Cessie, S., Schmidt, C.O., Lusa, L., Huebner, M., and Topic Group “Initial Data Analysis” of the STRATOS Initiative (2022). Ten simple rules for initial data analysis. PLoS Comput. Biol., 18.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3