An Investigation of Modular Composable Acoustic Metamaterials with Multiple Nonunique Chambers

Author:

Yang Xiaocui12ORCID,Shen Xinmin3ORCID,Hu Daochun1,Wang Xiaoyong1,Song Haichao1,Zhao Rongxing1,Zhang Chunmei1,Shen Cheng2,Yang Mengna1

Affiliation:

1. Engineering Training Center, Nanjing Vocational University of Industry Technology, Nanjing 210023, China

2. MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. Field Engineering College, Army Engineering University of PLA, Nanjing 210007, China

Abstract

To make the sound absorber easy to fabricate and convenient for practical application, a modular composable acoustic metamaterial with multiple nonunique chambers (MCAM–MNCs) was proposed and investigated, which was divided into a front panel with the same perforated apertures and a rear chamber with a nonunique grouped cavity. Through the acoustic finite element simulation, the parametric studies of the diameter of aperture d, depth of chamber T0, and thickness of panel t0 were conducted, which could tune the sound absorption performances of MCAM–MNCs–1 and MCAM–MNCs–2 for the expected noise reduction effect. The effective sound absorption band of MCAM–MNCs–1 was 556 Hz (773–1329 Hz), 456 Hz (646–1102 Hz), and 387 Hz (564–951 Hz) for T = 30 mm, T = 40 mm, and T = 50 mm, respectively, and the corresponding average sound absorption coefficient was 0.8696, 0.8854, and 0.8916, accordingly, which exhibited excellent noise attenuation performance. The sound absorption mechanism of MCAM–MNCs was investigated by the distributions of the total sound energy density (TSED). The components used to assemble the MCAM–MNCs sample were fabricated by additive manufacturing, and its actual sound absorption coefficients were tested according to the transfer matrix method, which demonstrated its feasibility and promoted its actual application.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3