Theoretical Investigation on Indirect Tensile Strength of Concrete with Rectangular Cross-Section under Locally Distributed Load

Author:

Wang Ziran1,Xu Jialin1,Sun Linhao2,Yue Jinchao1,Zang Quansheng1

Affiliation:

1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China

2. Zhengzhou Public Utility Investment and Development Group Co., Ltd., Zhengzhou 450000, China

Abstract

The indirect tensile test plays a crucial role in experimental investigations of brittle material properties. In this study, a mechanical analysis model of the rectangular test block is established based on the theory of elastic mechanics for the characteristics of the indirect tensile test. The theoretical solution of the triangular series is derived for the rectangular test block under the locally distributed load. The finite element simulation results and splitting test results were compared with the theoretical results. The results of the study verify the accuracy of the theoretical solutions. Based on the proposed analytical solution, the effects of loading width and length-to-height ratio (h/l) of local loading on the measured tensile strength of test block are discussed. The results demonstrate that the tensile strength of the test block increases as the loading width expands, and the rate of growth in the recorded tensile strength gradually stabilizes. The variation in loading width affects the location of crack initiation points during the concrete test block splitting tests. When the loading width exceeds 6% of the side length of test block, the cracking point is positioned at the center of test block, ensuring the effectiveness of the splitting test. As the length-to-height ratio of the test block increases, there is a general upward trend in the measured tensile strength. When h/l < 0.6, the measured tensile strength initially increases before decreasing. However, when h/l > 0.6, the measured tensile strength consistently increases, with the rate of increase gradually diminishing until it stabilizes. The length-to-height ratio also significantly influences the location of the cracking point in the test block. As the length-to-height ratio increases, the cracking point initially shifts from around the center to the central point and then further from the center toward the edge. To ensure that the location of the crack initiation point is in the center of the specimen and that the tensile strength is close to the measured result, the length to height ratio can be chosen at around 0.85.

Funder

Henan Provincial Department of Transportation

Key Science and Technology Project of Henan Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3