An Anisotropic Peridynamic Model for Simulating Crack Propagation in Isotropic and Anisotropic Rocks

Author:

Tian Kaiwei12,Zhu Zeqi12,Sheng Qian12,Tian Ning12ORCID

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In this work, we present a peridynamic-based simulation method for modeling quasi-static fracture propagation in isotropic and anisotropic rock within the framework of peridynamic least square minimization (PDLSM). The original isotropic elastic PDLSM is further extended to investigate fracture propagation in anisotropic materials in this study. The proposed AN-PDLSM model integrates an anisotropic model in fracture mechanics to analyze the failure process of anisotropic rocks. An important advancement in this research lies in the incorporation of the maximum energy release rate criterion (MERR) into the PDLSM framework for the first time. This enhancement enables accurately determining crack propagation and the associated crack angles. The proposed model utilizes the energy release rate calculated through the J-integral method to assess bond breakage, and it employs a mesh-independent, piecewise linear fracture model to describe crack propagation. The proposed method fully combines the merits of traditional fracture mechanics with the unique capabilities of peridynamics. To demonstrate the effectiveness of the proposed model, a simulation of fracture evolution in isotropic plates subjected to semi-circular bending tests is presented and compared with experimental results. It is shown that the proposed model accurately replicates fracture trajectories in isotropic specimens. In the context of anisotropic rock, the effect of a weak coefficient on crack morphology is discussed in order to obtain a suitable value. Additionally, the impact of bedding angles on fracture paths through our proposed model is also explored, revealing excellent agreement with experimental results. The findings in this research demonstrate that the proposed AN-PDLSM model is exceptionally proficient at capturing the intricate, oscillating crack paths observed in anisotropic rock materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3