Comparison of Coupled Electrochemical and Thermal Modelling Strategies of 18650 Li-Ion Batteries in Finite Element Analysis—A Review

Author:

Csomós Bence12ORCID,Kocsis Szürke Szabolcs3ORCID,Fodor Dénes2

Affiliation:

1. Research and Development Center of Technical Sciences, University of Pannonia, H-8200 Veszprem, Hungary

2. E-Mobility Research Center, Department of Power Electronics and Electric Drives, Audi Hungaria Faculty of Automotive Engineering, Széchenyi István University, H-9026 Gyor, Hungary

3. Department of Road and Rail Vehicles, Audi Hungaria Faculty of Automotive Engineering, Széchenyi István University, H-9026 Gyor, Hungary

Abstract

The specificities of temperature-dependent electrochemical modelling strategies of 18650 Li-ion batteries were investigated in pseudo-2D, 2D and 3D domains using finite element analysis. Emphasis was placed on exploring the challenges associated with the geometric representation of the batteries in each domain, as well as analysing the performance of coupled thermal-electrochemical models. The results of the simulations were compared with real reference measurements, where temperature data were collected using temperature sensors and a thermal camera. It was highlighted that the spiral geometry provides the most realistic results in terms of the temperature distribution, as its layered structure allows for a detailed realisation of the radial heat transfer within the cell. On the other hand, the 3D-lumped thermal model is able to recover the temperature distribution in the axial direction of the cell and to reveal the influence of the cell cap and the cell wall on the thermal behaviour of the cell. The effect of cooling is an important factor that can be introduced in the models as a boundary condition by heat convection or heat flux. It has been shown that both regulated and unregulated (i.e., natural) cooling conditions can be achieved using an appropriate choice of the rate and type of cooling applied.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3