Effects of Mode Mixity and Loading Rate on Fracture Behavior of Cracked Thin-Walled 304L Stainless Steel Sheets with Large Non-Linear Plastic Deformation

Author:

Bidadi Jamal1ORCID,Saeidi Googarchin Hamed1ORCID,Akhavan-Safar Alireza2ORCID,da Silva Lucas F. M.3ORCID

Affiliation:

1. Automotive Fluid and Structures Analysis Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology (IUST), Tehran 13114-16846, Iran

2. Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 4200-465 Porto, Portugal

3. Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Abstract

This study investigates the mixed-mode I/II fracture behavior of O-notched diagonally loaded square plate (DLSP) samples containing an edge crack within the O-notch. This investigation aims to explore the combined effects of loading rate and mode mixity on the fracture properties of steel 304L, utilizing DLSP samples. The DLSP samples, made from strain-hardening steel 304L, were tested at three different loading rates: 1, 50, and 400 mm/min, covering five mode mixities from pure mode I to pure mode II. Additionally, tensile tests were performed on dumbbell-shaped specimens at the same loading rates to examine their influence on the material’s mechanical properties. The findings revealed that stress and strain diagrams derived from the dumbbell-shaped samples were largely independent of the tested loading rates (i.e., 1–400 mm/min). Furthermore, experimental results from DLSP samples showed no significant impact of the loading rates on the maximum load values, but did indicate an increase in the ultimate displacement. In contrast to the loading rate, mode mixity exhibited a notable effect on the fracture behavior of DLSP samples. Ultimately, it was observed that the loading rate had an insignificant effect on the fracture path or trajectory of the tested DLSP samples.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3