Effective Stabilization of Cadmium and Copper in Iron-Rich Laterite-Based Geopolymers and Influence on Physical Properties

Author:

Nkwaju Rachel Yanou1,Nouping Joëlle Nadia Fekoua1,Bachirou Soumayah1,Abo Tatiane Marina1,Deutou Juvenal Giogetti Nemaleu1ORCID,Djobo Jean Noël Yankwa1

Affiliation:

1. Local Materials Promotion Authority, MINRESI/MIPROMALO, Nkolbikok, Yaoundé P.O. Box 2396, Cameroon

Abstract

This study aimed to investigate the efficiency of a geopolymer binder of the type of Na-poly(ferro–silico–aluminate) as a matrix for the stabilization of heavy metals along with their effect on the development of structural performances. The artificial contamination of soil with ions was carried out and used to prepare an alkali-activated iron-rich lateritic soil binder. Further, various microstructural analyses were carried out to explain the stabilization mechanism. The stabilization efficiency was assessed by leaching tests in de-ionized water and hydrochloric acid (0.1 M, HCl). Then, the physical properties were determined to evaluate the impact of heavy metals on the structural performance of the binder. Results demonstrated that the prepared geopolymer binder has the lowest stabilization capacity in an acidic medium (low pH) than in water with high pH. However, the stabilization of Cu ions was effective at 99%, while the Cd ion is barely retained in the matrix. Firstly, the mechanism consists of chemical bonds through ion exchange with sodium of the Na-poly(ferro–silico–aluminate) network. Secondly, through physical interaction with the pore network of the matrix, the heavy metals induced structural deterioration in the geopolymer matrix with a decrease in the compressive strength and bulk density and an increase of both apparent porosity and water absorption.

Funder

Alexander von Humboldt Foundation

Organisation Internationale de la Francophonie

Organisation of African, Caribbean, and Pacific States

European Union

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3