The Mechanism of Deformation Compatibility of TA2/Q345 Laminated Metal in Dynamic Testing with Split-Hopkinson Pressure Bar

Author:

Fu Yanshu1,Chen Shoubo1,Zhao Penglong1,Ye Xiaojun12

Affiliation:

1. School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China

2. School of Information and Artificial Intelligence, Nanchang Institute of Science & Technology, Nanchang 330108, China

Abstract

The laminated metal materials are widely used in military, automobile and aerospace industries, but their dynamic response mechanical behavior needs to be further clarified, especially for materials with joint interface paralleling to the loading direction. The mechanical properties of TA2/Q345 (Titanium/Steel) laminated metal of this structure were studied by using the split Hopkinson pressure bar (SHPB). To shed light on the stress-state of a laminated metal with parallel structure, the relative non-uniformity of internal stress R(t) was analyzed. The mechanism of deformation compatibility of welding interface was discussed in detail. The current experiments demonstrate that in the strain rate range of 931–2250 s−1, the discrepancies of the internal stress in specimens are less than 5%, so the stress-state equilibrium hypothesis is satisfied during the effective loading time. Therefore, it is reasonable to believe that all stress–strain responses of the material are valid and reliable. Furthermore, the four deformation stages, i.e., the elastic stage, the plastic modulus compatible deformation stage, uniform plastic deformation stage and non-uniform plastic deformation stage, of the laminated metal with parallel structure were firstly proposed under the modulating action of the welding interface. The deformation stages are helpful for better utilization of laminated materials.

Funder

the National Natural Science Foundation of China

the Foundation of Jiangxi Province for Distinguished Young Scholars

the Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3