Author:
Han Xiao,Wu Huarui,Zhu Huaji,Chen Cheng
Abstract
The reduction of maintenance costs in agricultural wireless sensor networks (WSNs) requires reducing energy consumption. At the same time, care should be taken not to affect communication quality and network lifetime. This paper studies a joint optimization algorithm for transmitted power and channel allocation based on deep reinforcement learning. First, an optimization model to measure network reward was established under the constraint of the signal-to-interference plus-noise-ratio (SINR) threshold, which includes continuous power variables and discrete channel variables. Secondly, considering the dynamic changes of agricultural WSNs, the network control is described as a Markov decision process with continuous state and action space. A deep deterministic policy gradient (DDPG) reinforcement learning scheme suitable for mixed variables was designed. This method could obtain a control scheme that maximizes network reward by means of black-box optimization for continuous transmitted power and discrete channel allocation. Experimental results indicated that the studied algorithm has stable convergence. Compared with traditional protocols, it can better control the transmitted power and allocate channels. The joint power and channel optimization provides a reference solution for constructing an energy-balanced network.
Funder
National Natural Science Foundation of China
Beijing Municipal Science and Technology Project
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering