Core Predictors of Debt Specialization: A New Insight to Optimal Capital Structure

Author:

Khan Kanwal Iqbal,Qadeer Faisal,Mata Mário NunoORCID,Chavaglia Neto José,Sabir Qurat ul An,Martins Jéssica Nunes,Filipe José AntónioORCID

Abstract

Debt structure composition is an essential topic of discussion for the management of capital structure decisions. Researchers made extensive efforts to understand the criteria for selecting debts, specifically, to know about the reasons for debt specialization, concealed in identifying its predictors. This question is essential not only for establishing the field of debt structure but also for the financial managers to design corporate financial strategy in a way that leads to attaining an optimal debt structure. Sophisticated financial modeling is applied to identify the core predictors of debt specialization, influencing the strategic choices of optimal debt structure to address this issue. Data were collected from 419 non-financial companies listed at the Karachi Stock Exchange from 2009 to 2015. This study has validated debt specialization by showing that short-term debts maintain their position over the years and remain the most popular type of loan among Pakistani firms. Further, it provides a comprehensive view of the cross-sectional differences among the firms involved in debt specialization by applying a holistic approach. Results show that small, growing, dividend-paying companies, having high expense and risk ratios, followed the debt specialization strategy. This strategy enables firms to reduce their agency conflicts, transaction costs, information asymmetry, risk management and building up their good market reputation. Conclusively, we have identified the gross profit margin, long-term debt to asset ratio, firm size, age, asset tangibility, and long-term industry debt to asset ratio as reliable and core predictors of debt specialization for sustainable business growth.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3