Employing Fuzzy Logic to Analyze the Structure of Complex Biological and Epidemic Spreading Models

Author:

Lefevr Nickie,Kanavos AndreasORCID,Gerogiannis Vassilis C.ORCID,Iliadis Lazaros,Pintelas PanagiotisORCID

Abstract

Complex networks constitute a new field of scientific research that is derived from the observation and analysis of real-world networks, for example, biological, computer and social ones. An important subset of complex networks is the biological, which deals with the numerical examination of connections/associations among different nodes, namely interfaces. These interfaces are evolutionary and physiological, where network epidemic models or even neural networks can be considered as representative examples. The investigation of the corresponding biological networks along with the study of human diseases has resulted in an examination of networks regarding medical supplies. This examination aims at a more profound understanding of concrete networks. Fuzzy logic is considered one of the most powerful mathematical tools for dealing with imprecision, uncertainties and partial truth. It was developed to consider partial truth values, between completely true and completely false, and aims to provide robust and low-cost solutions to real-world problems. In this manuscript, we introduce a fuzzy implementation of epidemic models regarding the Human Immunodeficiency Virus (HIV) spreading in a sample of needle drug individuals. Various fuzzy scenarios for a different number of users and different number of HIV test samples per year are analyzed in order for the samples used in the experiments to vary from case to case. To the best of our knowledge, analyzing HIV spreading with fuzzy-based simulation scenarios is a research topic that has not been particularly investigated in the literature. The simulation results of the considered scenarios demonstrate that the existence of fuzziness plays an important role in the model setup process as well as in analyzing the effects of the disease spread.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3