Estimating Flooding at River Spree Floodplain Using HEC-RAS Simulation

Author:

Yazdan Munshi Md ShafwatORCID,Ahad Md TanvirORCID,Kumar RaaghulORCID,Mehedi Md Abdullah Al

Abstract

River renaturation can be an effective management method for restoring a floodplain’s natural capacity and minimizing the effects during high flow periods. A 1D-2D Hydrologic Engineering Center–River Analysis System (HEC-RAS) model, in which the flood plain was considered as 2D and the main channel as 1D, was used to simulate flooding in the restored reach of the Spree River, Germany. When computing in this model, finite volume and finite difference approximations using the Preissmann approach are used for the 1D and 2D models, respectively. To comprehend the sensitivity of the parameters and model, several scenarios were simulated using different time steps and grid sizes. Additionally, dikes, dredging, and changes to the vegetation pattern were used to simulate flood mitigation measures. The model predicted that flooding would occur mostly in the downstream portion of the channel in the majority of the scenarios without mitigation measures, whereas with mitigation measures, flooding in the floodplain would be greatly reduced. By preserving the natural balance on the channel’s floodplain, the restored area needs to be kept in good condition. Therefore, mitigating measures that balance the area’s economic and environmental aspects must be considered in light of the potential for floods.

Publisher

MDPI AG

Subject

Psychiatry and Mental health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review paper on applications of the HEC-RAS model for flooding, agriculture, and water quality simulation;Water Practice & Technology;2024-07-01

2. Advanced floodplain mapping: HEC-RAS and ArcGIS pro application on Swat River;Journal of Umm Al-Qura University for Engineering and Architecture;2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3