Influence of Specific Treatment Parameters on Nontarget and Out-of-Field Doses in a Phantom Model of Prostate SBRT with CyberKnife and TrueBeam

Author:

Kruszyna-Mochalska MartaORCID,Skrobala Agnieszka,Romanski Piotr,Ryczkowski Adam,Suchorska WiktoriaORCID,Kulcenty KatarzynaORCID,Piotrowski IgorORCID,Borowicz Dorota,Graczyk Kinga,Matuszak Natalia,Malicki JulianORCID

Abstract

The aim of the study was to determine the influence of a key treatment plan and beam parameters on overall dose distribution and on doses in organs laying in further distance from the target during prostate SBRT. Multiple representative treatment plans (n = 12) for TrueBeam and CyberKnife were prepared and evaluated. Nontarget doses were measured with anionization chamber, in a quasi-humanoid phantom at four sites corresponding to the intestines, right lung, thyroid, and head. The following parameters were modified: radiotherapy technique, presence or not of a flattening filter, degree of modulation, and use or not of jaw tracking function for TrueBeam and beam orientation set-up, optimization techniques, and number of MUs for CyberKnife. After usual optimization doses in intestines (near the target) were 0.73% and 0.76%, in head (farthest from target) 0.05% and 0.19% for TrueBeam and CyberKnife, respectively. For TrueBeam the highest peripheral (head, thyroid, lung) doses occurred for the VMAT with the flattening filter while the lowest for 3DCRT. For CyberKnife the highest doses were for gantry with caudal direction beams blocked (gantry close to OARs) while the lowest was the low modulated VOLO optimization technique. The easiest method to reduce peripheral doses was to combine FFF with jaw tracking and reducing monitor units at TrueBeam and to avoid gantry position close to OARs together with reduction of monitor units at CyberKnife, respectively. The presented strategies allowed to significantly reduce out-of-field and nontarget doses during prostate radiotherapy delivered with TrueBeam and CyberKnife. A different approach was required to reduce peripheral doses because of the difference in dose delivery techniques: non-coplanar using CyberKnife and coplanar using TrueBeam, respectively.

Funder

National Science Center

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3