Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics

Author:

Kabaivanova LyudmilaORCID,Petrova PenkaORCID,Hubenov Venelin,Simeonov Ivan

Abstract

Anaerobic digestion (AD) is a widespread biological process treating organic waste for green energy production. In this study, wheat straw and corn stalks without any harsh preliminary treatment were collected as a renewable source to be employed in a laboratory-scale digester to produce biogas/biomethane. Processes parameters of temperature, pH, total solids, volatile solid, concentration of volatile fatty acids (VFA), and cellulose concentration, were followed. The volume of biogas produced was measured. The impact of organic loading was stated, showing that the process at 55 °C tolerated a higher substrate load, up to 45 g/L. Further substrate increase did not lead to biogas accumulation increase, probably due to inhibition or mass transfer limitations. After a 12-day anaerobic digestion process, cumulative volumes of biogas yields were 4.78 L for 1 L of the bioreactor working volume with substrate loading 30 g/L of wheat straw, 7.39 L for 40 g/L and 8.22 L for 45 g/L. The degree of biodegradation was calculated to be 68.9%, 74% and 72%, respectively. A fast, effective process for biogas production was developed from native wheat straw, with the highest quantity of daily biogas production occurring between day 2 and day 5. Biomethane concentration in the biogas was 60%. An analysis of bacterial diversity by metagenomics revealed that more than one third of bacteria belonged to class Clostridia (32.9%), followed by Bacteroidia (21.5%), Betaproteobacteria (11.2%), Gammaproteobacteria (6.1%), and Alphaproteobacteria (5%). The most prominent genera among them were Proteiniphilum, Proteiniborus, and Pseudomonas. Archaeal share was 1.37% of the microflora in the thermophilic bioreactor, as the genera Methanocorpusculum, Methanobacterium, Methanomassiliicoccus, Methanoculleus, and Methanosarcina were the most abundant. A knowledge of the microbiome residing in the anaerobic digester can be further used for the development of more effective processes in conjunction with theidentified consortium.

Funder

BNSF

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3