CAMDLES: CFD-DEM Simulation of Microbial Communities in Spaceflight and Artificial Microgravity

Author:

An RockyORCID,Lee Jessica AudreyORCID

Abstract

We present CAMDLES (CFD-DEM Artificial Microgravity Developments for Living Ecosystem Simulation), an extension of CFDEM®Coupling to model biological flows, growth, and mass transfer in artificial microgravity devices. For microbes that accompany humans into space, microgravity-induced alterations in the fluid environment are likely to be a major factor in the microbial experience of spaceflight. Computational modeling is needed to investigate how well ground-based microgravity simulation methods replicate that experience. CAMDLES incorporates agent-based modeling to study inter-species metabolite transport within microbial communities in rotating wall vessel bioreactors (RWVs). Preexisting CFD modeling of RWVs has not yet incorporated growth; CAMDLES employs the simultaneous modeling of biological, chemical, and mechanical processes in a micro-scale rotating reference frame environment. Simulation mass transfer calculations were correlated with Monod dynamic parameters to predict relative growth rates between artificial microgravity, spaceflight microgravity, and 1 g conditions. By simulating a microbial model community of metabolically cooperative strains of Escherichia coli and Salmonella enterica, we found that the greatest difference between microgravity and an RWV or 1 g gravity was when species colocalized in dense aggregates. We also investigated the influence of other features of the system on growth, such as spatial distribution, product yields, and diffusivity. Our simulation provides a basis for future laboratory experiments using this community for investigation in artificial microgravity and spaceflight microgravity. More broadly, our development of these models creates a framework for novel hypothesis generation and design of biological experiments with RWVs, coupling the effects of RWV size, rotation rate, and mass transport directly to bacterial growth in microbial communities.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3