Author:
Zhao Xuejin,Zong Yeqing,Wei Weijia,Lou Chunbo
Abstract
Thaxtomin A is a potent bioherbicide in both organic and conventional agriculture; however, its low yield hinders its wide application. Here, we report the direct cloning and heterologous expression of the thaxtomin A gene cluster in three well-characterized Streptomyces hosts. Then, we present an efficient, markerless and multiplex large gene cluster editing method based on in vitro CRISPR/Cas9 digestion and yeast homologous recombination. With this method, we successfully engineered the thaxtomin A cluster by simultaneously replacing the native promoters of the txtED operon, txtABH operon and txtC gene with strong constitutive promoters, and the yield of thaxtomin A improved to 289.5 µg/mL in heterologous Streptomyces coelicolor M1154. To further optimize the biosynthetic pathway, we used constraint-based combinatorial design to build 27 refactored gene clusters by varying the promoter strength of every operon, and the highest titer of thaxtomin A production reached 504.6 μg/mL. Taken altogether, this work puts forward a multiplexed promoter engineering strategy to engineer secondary metabolism gene clusters for efficiently improving fermentation titers.
Funder
National Key Research and Development Program of China
Natural Science Foundation of China
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献