Correlation of Hemodynamic and Respiratory Parameters in Invasive Cardiopulmonary Exercise Testing (iCPET)

Author:

Habedank DirkORCID,Obst Anne,Heine AlexanderORCID,Stubbe BeateORCID,Ewert RalfORCID

Abstract

Background: Invasive cardiopulmonary exercise testing (iCPET) is an integral part in the advanced diagnostic workup of pulmonary hypertension (PH). Our study evaluated the relation between hemodynamic and respiratory parameters at two different resting conditions and two defined low exercise levels with a close synchronization of measurements in a broad variety of dyspnea patients. Subjects and methods: We included 146 patients (median age 69 years, range 22 to 85 years, n = 72 female) with dyspnea of uncertain origin. Invasive hemodynamic and gas exchange parameters were measured at rest, 45° upright position, unloaded cycling, 25 and 50 W exercise. All measurements were performed in a single RHC procedure. Results: Oxygen uptake (VO2/body mass) correlated significantly with cardiac index (all p ≤ 0.002) at every resting and exercise level and with every method of cardiac output measurement (thermodilution, method of Fick). Mean pulmonary arterial pressure (PAPmean) correlated with all respiratory parameters (respiratory rate, partial end-tidal pressures of oxygen and carbon dioxide [petCO2 and petO2], ventilation/carbon dioxide resp. oxygen ratio [VE/VCO2, VE/VO2], and minute ventilation [VE], all p < 0.05). These correlations improved with increasing exercise levels from rest via unloaded cycling to 25 W. There was no correlation with right atrial or pulmonary arterial wedge pressure. Summary: In dyspnea patients of different etiologies, the cardiac index is closely linked to VO2 at every level of rest and submaximal exercise. PAPmean is the only pressure that correlates with different respiratory parameters, but this correlation is highly significant and stable at rest, unloaded cycling and at 25 W.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3