Low-Rank and Sparse Recovery of Human Gait Data

Author:

Kamali Kaveh,Akbari Ali Akbar,Desrosiers Christian,Akbarzadeh Alireza,Otis Martin J.-D.ORCID,Ayena Johannes C.ORCID

Abstract

Due to occlusion or detached markers, information can often be lost while capturing human motion with optical tracking systems. Based on three natural properties of human gait movement, this study presents two different approaches to recover corrupted motion data. These properties are used to define a reconstruction model combining low-rank matrix completion of the measured data with a group-sparsity prior on the marker trajectories mapped in the frequency domain. Unlike most existing approaches, the proposed methodology is fully unsupervised and does not need training data or kinematic information of the user. We evaluated our methods on four different gait datasets with various gap lengths and compared their performance with a state-of-the-art approach using principal component analysis (PCA). Our results showed recovering missing data more precisely, with a reduction of at least 2 mm in mean reconstruction error compared to the literature method. When a small number of marker trajectories is available, our findings showed a reduction of more than 14 mm for the mean reconstruction error compared to the literature approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3