Study of Practical Analysis Method for Shear Warping Deformationof Composite Box Girder with Corrugated Steel Webs

Author:

Zhou Maoding12,Zhang Yuanhai2,Lin Pengzhen2,Ji Wei2ORCID,Huang Hongmeng2

Affiliation:

1. Department of Civil Engineering, Gansu Agricultural University, Lanzhou 730070, China

2. College of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

Shear warping deformation is an important part of the flexural and constrained torsion analysis of composite box girder with corrugated steel webs (CBG-CSWs), which is also the main reason for the complex force analysis of box girders. A new practical theory for analyzing shear warping deformations of CBG-CSWs is presented. By introducing shear warping deflection and corresponding internal forces, the flexural deformation of CBG-CSWs is decoupled to the Euler-Bernoulli beam (EBB) flexural deformation and the shear warping deflection. On this basis, a simplified method for solving shear warping deformation using the EBB theory is proposed. According to the similarity of the governing differential equations of constrained torsion and shear warping deflection, a convenient analysis method for the constrained torsion of CBG-CSWs is derived. Based on the decoupled deformation states, a beam segment element analytical model applicable to EBB flexural deformation, shear warping deflection, and constrained torsion deformation is proposed. A variable section beam segment analysis program considering the variation of section parameters is developed for CBG-CSWs. Numerical examples of constant and variable section continuous CBG-CSWs show that the stress and deformation results obtained by the proposed method are in good agreement with the 3D finite element results, verifying the effectiveness by the proposed method. Additionally, the shear warping deformation has a great influence on the cross-sections near the concentrated load and middle supports. This impact along the beam axis decays exponentially, and the decay rate is related to the shear warping coefficient of the cross-section.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3