Study of Geopolymers Obtained from Wheat Husk Native to Northern Mexico

Author:

Hernández-Escobar Claudia Alejandra12,Conejo-Dávila Alain Salvador3,Vega-Rios Alejandro1ORCID,Zaragoza-Contreras Erasto Armando1ORCID,Farias-Mancilla José Rurik2ORCID

Affiliation:

1. Centro de Investigación en Materiales Avanzados, SC, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico

2. Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez—UACJ, Ciudad Juárez 32310, Mexico

3. Centro de Innovación Aplicada en Tecnologías Competitivas, A.C. Calle Omega No. 201, Industrial Delta, León 37545, Mexico

Abstract

Agro-industrial wastes such as wheat husk (WH) are renewable sources of organic and inorganic substances, including cellulose, lignin, and aluminosilicates, which can be transformed into advanced materials with high added value. The use of geopolymers is a strategy to take advantage of the inorganic substances by obtaining inorganic polymers, which have been used as additives, e.g., for cement and refractory brick products or ceramic precursors. In this research, the WH native to northern Mexico was used as a source to produce wheat husk ash (WHA) following its calcination at 1050 °C. In addition, geopolymers were synthesized from the WHA by varying the concentrations of the alkaline activator (NaOH) from 16 M to 30 M, namely Geo 16M, Geo 20M, Geo 25M, and Geo 30M. At the same time, a commercial microwave radiation process was employed as the curing source. Furthermore, the geopolymers synthesized with 16 M and 30 M of NaOH were studied for their thermal conductivity as a function of temperature, in particular at 25, 35, 60, and 90 °C. The chemical composition of the WHA, determined by ICP, revealed a SiO2 content close to 81%, which is similar to rice husk. The geopolymers were characterized using various techniques to determine their structure, mechanical properties, and thermal conductivity. The findings showed that the synthesized geopolymers with 16M and 30M of NaOH had significant mechanical properties and thermal conductivity, respectively, compared to the other synthesized materials. Finally, the thermal conductivity regarding the temperature revealed that Geo 30M presented significant performance, especially at 60 °C.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3