A Brief Overview on Crack Patterns, Repair and Strengthening of Historical Masonry Structures

Author:

Latifi Reza1ORCID,Hadzima-Nyarko Marijana23ORCID,Radu Dorin3ORCID,Rouhi Rahimeh45ORCID

Affiliation:

1. School of Civil Engineering, University of Bologna, 40126 Bologna, Italy

2. Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia

3. Faculty of Civil Engineering, Transilvania University of Brașov, 500036 Brasov, Romania

4. Department of Radiation Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France

5. Université Paris-Saclay, Institut Gustave Roussy, Inserm, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France

Abstract

Given that a significant fraction of buildings and architectural heritage in Europe’s historical centers are masonry structures, the selection of proper diagnosis, technological surveys, non-destructive testing, and interpretations of crack and decay patterns is paramount for a risk assessment of possible damage. Identifying the possible crack patterns, discontinuities, and associated brittle failure mechanisms within unreinforced masonry under seismic and gravity actions allows for reliable retrofitting interventions. Traditional and modern materials and strengthening techniques create a wide range of compatible, removable, and sustainable conservation strategies. Steel/timber tie-rods are mainly used to support the horizontal thrust of arches, vaults, and roofs and are particularly suitable for better connecting structural elements, e.g., masonry walls and floors. Composite reinforcing systems using carbon, glass fibers, and thin mortar layers can improve tensile resistance, ultimate strength, and displacement capacity to avoid brittle shear failures. This study overviews masonry structural diagnostics and compares traditional and advanced strengthening techniques of masonry walls, arches, vaults, and columns. Several research results in automatic surface crack detection for unreinforced masonry (URM) walls are presented considering crack detection based on machine learning and deep learning algorithms. In addition, the kinematic and static principles of Limit Analysis within the rigid no-tension model framework are presented. The manuscript sets a practical perspective, providing an inclusive list of papers describing the essential latest research in this field; thus, this paper is useful for researchers and practitioners in masonry structures.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3