3D Off-Lattice Coarse-Grained Monte Carlo Simulations for Nucleation of Alkaline Aluminosilicate Gels

Author:

Izadifar Mohammadreza1ORCID,Valencia Nicolas Castrillon1ORCID,Xiao Peng1ORCID,Ukrainczyk Neven1ORCID,Koenders Eduardus1ORCID

Affiliation:

1. Institute of Construction and Building Materials, Technical University of Darmstadt, Franziska-Braun-Str. 3, 64287 Darmstadt, Germany

Abstract

This work presents a 3D off-lattice coarse-grained Monte Carlo (CGMC) approach to simulate the nucleation of alkaline aluminosilicate gels, their nanostructure particle size, and their pore size distribution. In this model, four monomer species are coarse-grained with different particle sizes. The novelty is extending the previous on-lattice approach from White et al. (2012 and 2020) by implementing a full off-lattice numerical implementation to consider tetrahedral geometrical constraints when aggregating the particles into clusters. Aggregation of the dissolved silicate and aluminate monomers was simulated until reaching the equilibrium condition of 16.46% and 17.04% in particle number, respectively. The cluster size formation was analyzed as a function of iteration step evolution. The obtained equilibrated nano-structure was digitized to obtain the pore size distribution and this was compared with the on-lattice CGMC and measurement results from White et al. The observed difference highlighted the importance of the developed off-lattice CGMC approach to better describe the nanostructure of aluminosilicate gels.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3