Construction of Bouquet-like Bi2Se3/Bi2O3@Bi Composites with High Interfacial Charge Separation for the Degradation of Atrazine

Author:

Han Juncheng1,Pang Menghan1,Meng Donghuan1,Qiu Jianrong1,Wang Dongbo12ORCID

Affiliation:

1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

2. Guangxi Universities Key Laboratory of Environmental Protection, Guangxi University, Nanning 530004, China

Abstract

Using low-density solar energy in the environment and converting it into chemical energy that can drive the degradation of organic pollutants is considered to be a very promising strategy for solving the problem of environmental pollution. The efficacy of photocatalytic destruction of organic contaminants is nonetheless constrained by the high composite rate of photogenic carriers, insufficient light absorption and utilization impact, and sluggish charge transfer rate. In this work, we created a new type of heterojunction photocatalyst with a spherical Bi2Se3/Bi2O3@Bi core–shell structure and investigated its degrading properties of organic pollutants in the environment. Interestingly, benefiting from the fast electron transfer capability of the Bi0 electron bridge, the charge separation and transfer efficiency between Bi2Se3 and Bi2O3 is greatly improved. In this photocatalyst, Bi2Se3 not only has a photothermal effect to speed up the process of photocatalytic reaction, but also has fast electrical conductivity of topological materials at the surface, which speeds up the transmission efficiency of photogenic carriers. As expected, the removal performance of the Bi2Se3/Bi2O3@Bi photocatalyst to atrazine is 4.2 and 5.7 times higher than that of the original Bi2Se3 and Bi2O3. Meanwhile, the best samples Bi2Se3/Bi2O3@Bi showed 98.7%, 97.8%, 69.4%, 90.6%, 91.2%, 77.2%, 97.7%, and 98.9% removal of ATZ, 2,4-DCP, SMZ, KP, CIP, CBZ, OTC-HCl, and RhB, and 56.8%, 59.1%, 34.6%, 34.5%, 37.1%, 73.9%, and 78.4% mineralization. Through characterization such as XPS and electrochemical workstations, it is proved that the photocatalytic properties of Bi2Se3/Bi2O3@Bi catalysts are far superior to other materials, and a suitable photocatalytic mechanism is proposed. A novel form of bismuth-based compound photocatalyst is anticipated to be produced as a result of this research in order to address the increasingly critical problem of environmental water pollution in addition to presenting fresh avenues for the creation of adaptable nanomaterials for additional environmental applications.

Funder

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3