Excluding Echo Shift Noise in Real-Time Pulse-Echo Speed-of-Sound Imaging

Author:

Salemi Yolgunlu Parisa1ORCID,Korta Martiartu Naiara1ORCID,Gerber Urs Richard1,Frenz Martin1ORCID,Jaeger Michael1ORCID

Affiliation:

1. Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

Abstract

Computed ultrasound tomography in echo mode (CUTE) allows real-time imaging of the tissue speed of sound (SoS) using handheld ultrasound. The SoS is retrieved by inverting a forward model that relates the spatial distribution of the tissue SoS to echo shift maps detected between varying transmit and receive angles. Despite promising results, in vivo SoS maps often show artifacts due to elevated noise in echo shift maps. To minimize artifacts, we propose a technique where an individual SoS map is reconstructed for each echo shift map separately, as opposed to a single SoS map from all echo shift maps simultaneously. The final SoS map is then obtained as a weighted average over all SoS maps. Due to the partial redundancy between different angle combinations, artifacts that appear only in a subset of the individual maps can be excluded via the averaging weights. We investigate this real-time capable technique in simulations using two numerical phantoms, one with a circular inclusion and one with two layers. Our results demonstrate that the SoS maps reconstructed using the proposed technique are equivalent to the ones using simultaneous reconstruction when considering uncorrupted data but show significantly reduced artifact level for data that are corrupted by noise.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learnt correction for regularization-related biases in pulse-echo speed-of-sound imaging;2023 IEEE International Ultrasonics Symposium (IUS);2023-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3