TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition

Author:

Wang Kaixuan1,Deng Hongmin1

Affiliation:

1. College of Electronics and Information Engineering, Sichuan University, No. 24, Section 1, First Ring Road, Wuhou District, Chengdu 610041, China

Abstract

For skeleton-based action recognition, graph convolutional networks (GCN) have absolute advantages. Existing state-of-the-art (SOTA) methods tended to focus on extracting and identifying features from all bones and joints. However, they ignored many new input features which could be discovered. Moreover, many GCN-based action recognition models did not pay sufficient attention to the extraction of temporal features. In addition, most models had swollen structures due to too many parameters. In order to solve the problems mentioned above, a temporal feature cross-extraction graph convolutional network (TFC-GCN) is proposed, which has a small number of parameters. Firstly, we propose the feature extraction strategy of the relative displacements of joints, which is fitted for the relative displacement between its previous and subsequent frames. Then, TFC-GCN uses a temporal feature cross-extraction block with gated information filtering to excavate high-level representations for human actions. Finally, we propose a stitching spatial–temporal attention (SST-Att) block for different joints to be given different weights so as to obtain favorable results for classification. FLOPs and the number of parameters of TFC-GCN reach 1.90 G and 0.18 M, respectively. The superiority has been verified on three large-scale public datasets, namely NTU RGB + D60, NTU RGB + D120 and UAV-Human.

Funder

Natural Science Foundation of Sichuan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3