Modification of a Conventional Deep Learning Model to Classify Simulated Breathing Patterns: A Step toward Real-Time Monitoring of Patients with Respiratory Infectious Diseases

Author:

Park Jinho1ORCID,Mah Aaron James23ORCID,Nguyen Thien1,Park Soongho1ORCID,Ghazi Zadeh Leili23,Shadgan Babak23ORCID,Gandjbakhche Amir H.1ORCID

Affiliation:

1. Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Dr., Bethesda, MD 20894, USA

2. Implantable Biosensing Laboratory, International Collaboration on Repair Discoveries, Vancouver, BC V5Z 1M9, Canada

3. Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada

Abstract

The emergence of the global coronavirus pandemic in 2019 (COVID-19 disease) created a need for remote methods to detect and continuously monitor patients with infectious respiratory diseases. Many different devices, including thermometers, pulse oximeters, smartwatches, and rings, were proposed to monitor the symptoms of infected individuals at home. However, these consumer-grade devices are typically not capable of automated monitoring during both day and night. This study aims to develop a method to classify and monitor breathing patterns in real-time using tissue hemodynamic responses and a deep convolutional neural network (CNN)-based classification algorithm. Tissue hemodynamic responses at the sternal manubrium were collected in 21 healthy volunteers using a wearable near-infrared spectroscopy (NIRS) device during three different breathing conditions. We developed a deep CNN-based classification algorithm to classify and monitor breathing patterns in real time. The classification method was designed by improving and modifying the pre-activation residual network (Pre-ResNet) previously developed to classify two-dimensional (2D) images. Three different one-dimensional CNN (1D-CNN) classification models based on Pre-ResNet were developed. By using these models, we were able to obtain an average classification accuracy of 88.79% (without Stage 1 (data size reducing convolutional layer)), 90.58% (with 1 × 3 Stage 1), and 91.77% (with 1 × 5 Stage 1).

Funder

intramural research program at the Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3