Abstract
Topological indices describe mathematical invariants of molecules in mathematical chemistry. M-polynomials of chemical graph theory have freedom about the nature of molecular graphs and they play a role as another topological invariant. Social networks can be both cyclic and acyclic in nature. We develop a novel application of M-polynomials, the ( m , n , r ) -agent recruitment graph where n > 1 , to study the relationship between the Dunbar graphs of social networks and the small-world phenomenon. We show that the small-world effects are only possible if everyone uses the full range of their network when selecting steps in the small-world chain. Topological indices may provide valuable insights into the structure and dynamics of social network graphs because they incorporate an important element of the dynamical transitivity of such graphs.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献