Time for Change: Implementation of Aksentijevic-Gibson Complexity in Psychology

Author:

Aksentijevic Aleksandar,Mihailovic Anja,T. Mihailovic DragutinORCID

Abstract

Given that complexity is critical for psychological processing, it is somewhat surprising that the field was dominated for a long time by probabilistic methods that focus on the quantitative aspects of the source/output. Although the more recent approaches based on the Minimum Description Length principle have produced interesting and useful models of psychological complexity, they have not directly defined the meaning and quantitative unit of complexity measurement. Contrasted to these mathematical approaches are various ad hoc measures based on different aspects of structure, which can work well but suffer from the same problem. The present manuscript is composed of two self-sufficient, yet related sections. In Section 1, we describe a complexity measure for binary strings which satisfies both these conditions (Aksentijevic–Gibson complexity; AG). We test the measure on a number of classic studies employing both short and long strings and draw attention to an important feature—a complexity profile—that could be of interest in modelling the psychological processing of structure as well as analysis of strings of any length. In Section 2 we discuss different factors affecting the complexity of visual form and showcase a 2D generalization of AG complexity. In addition, we provide algorithms in R that compute the AG complexity for binary strings and matrices and demonstrate their effectiveness on examples involving complexity judgments, symmetry perception, perceptual grouping, entropy, and elementary cellular automata. Finally, we enclose a repository of codes, data and stimuli for our example in order to facilitate experimentation and application of the measure in sciences outside psychology.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3