Abstract
For a scalar field in an exponentially expanding universe, constituent modes of elementary excitation become unstable consecutively at shorter wavelength. After canonical quantization, a Bogoliubov transformation reduces the minimally coupled scalar field to independent 1D modes of two inequivalent types, leading eventually to a cosmological partitioning of energy. Due to accelerated expansion of the coupled space-time, each underlying mode transits from an attractive oscillator with discrete energy spectrum to a repulsive unit with continuous unbounded energy spectrum. The underlying non-autonomous Schrödinger equation is solved here as the wave function evolves through the attraction-repulsion transition and ceases to oscillate.
Funder
Australian Research Council
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献