Securing Fingerprint Template Using Blockchain and Distributed Storage System

Author:

Acquah Moses ArhinfulORCID,Chen Na,Pan Jeng-ShyangORCID,Yang Hong-Mei,Yan Bin

Abstract

Biometrics, with its uniqueness to every individual, has been adapted as a security authentication feature by many institutions. These biometric data are processed into templates that are saved on databases, and a central authority centralizes and controls these databases. This form of storing biometric data, or in our case fingerprint template, is asymmetric and prone to three main security attacks, such as fake template input, template modification or deletion, and channel interception by a malicious attacker. In this paper, we secure an encrypted fingerprint template by a symmetric peer-to-peer network and symmetric encryption. The fingerprint is encrypted by the symmetric key algorithm: Advanced Encryption Standard (AES) algorithm and then is uploaded to a symmetrically distributed storage system, the InterPlanetary File system (IPFS). The hash of the templated is stored in a decentralized blockchain. The slow transaction speed of the blockchain has limited its use in real-life applications, such as large file storage, hence, the merge with IPFS to store just the hashes of large files. The encrypted template is uploaded to the IPFS, and its returned digest is stored on the Ethereum network. The implementation of IPFS prevents storing the raw state of the fingerprint template on the Ethereum network in order to reduce cost and also prevent identity theft. This procedure is an improvement of previous systems. By adopting the method of template hashing, the proposed system is cost-effective and efficient. The experimental results depict that the proposed system secures the fingerprint template by encryption, hashing, and decentralization.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on blockchain deployment for biometric systems;IET Blockchain;2024-02

2. Blockchain’s double-edged sword: thematic review of illegal activities using blockchain;Journal of Information, Communication and Ethics in Society;2024-01-23

3. Securing Indonesian Hoax News Dataset with Blockchain, IPFS, and Voting Mechanism;2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS);2023-08-09

4. Continuous user identification in distance learning: a recent technology perspective;Smart Learning Environments;2023-07-26

5. A lattice‐based blind ring signature scheme for sensitive data protection in blockchain applications;Concurrency and Computation: Practice and Experience;2023-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3