Abstract
The symmetry energy is an invaluable tool for studying dense nuclear matter. Unfortunately, its definition is somewhat implicit, and therefore, phenomenological methods are necessary to describe experimental facts. This paper discusses the differences arising from the use of Taylor series expansion and Padé approximation to determine theoretically the symmetry energy and the possible consequences for neutron stars. For this purpose, a form of the nuclear matter equation of state that explicitly depends on the symmetry energy is used. The obtained results point out that the applied approximations lead to modifications of the equilibrium proton fractions and equation of state, especially in their high-density limit. However, this effect is small near the saturation density n 0 .
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献