Abstract
Segmentation of retinal blood vessels is the first step for several computer aided-diagnosis systems (CAD), not only for ocular disease diagnosis such as diabetic retinopathy (DR) but also of non-ocular disease, such as hypertension, stroke and cardiovascular diseases. In this paper, a supervised learning-based method, using a multi-layer perceptron neural network and carefully selected vector of features, is proposed. In particular, for each pixel of a retinal fundus image, we construct a 24-D feature vector, encoding information on the local intensity, morphology transformation, principal moments of phase congruency, Hessian, and difference of Gaussian values. A post-processing technique depending on mathematical morphological operators is used to optimise the segmentation. Moreover, the selected feature vector succeeded in outfitting the symmetric features that provided the final blood vessel probability as a binary map image. The proposed method is tested on three known datasets: Digital Retinal Image for Extraction (DRIVE), Structure Analysis of the Retina (STARE), and CHASED_DB1 datasets. The experimental results, both visual and quantitative, testify to the robustness of the proposed method. This proposed method achieved 0.9607, 0.7542, and 0.9843 in DRIVE, 0.9632, 0.7806, and 0.9825 on STARE, 0.9577, 0.7585 and 0.9846 in CHASE_DB1, with respectable accuracy, sensitivity, and specificity performance metrics. Furthermore, they testify that the method is superior to seven similar state-of-the-art methods.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献