Self-Calibration Sensor for Contactless Voltage Measurement Based on Dynamic Capacitance

Author:

Suo Chunguang1,Huang Rujin1,Zhou Guoqiong1,Zhang Wenbin2,Wang Yanyun1,He Mingxing1

Affiliation:

1. College of Science, Kunming University of Science and Technology, Kunming 650504, China

2. College of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650504, China

Abstract

Noncontact voltage measurement has the advantages of simple handling, high construction safety, and not being affected by line insulation. However, in practical measurement of noncontact voltage, sensor gain is affected by wire diameter, wire insulation material, and relative position deviation. At the same time, it is also subject to interference from interphase or peripheral coupling electric fields. This paper proposes a noncontact voltage measurement self-calibration method based on dynamic capacitance, which realizes self-calibration of sensor gain through unknown line voltage to be measured. Firstly, the basic principle of the self-calibration method for noncontact voltage measurement based on dynamic capacitance is introduced. Subsequently, the sensor model and parameters were optimized through error analysis and simulation research. Based on this, a sensor prototype and remote dynamic capacitance control unit that can shield against interference are developed. Finally, the accuracy test, anti-interference ability test, and line adaptability test of the sensor prototype were conducted. The accuracy test showed that the maximum relative error of voltage amplitude was 0.89%, and the phase relative error was 1.57%. The anti-interference ability test showed that the error offset was 0.25% when there were interference sources. The line adaptability test shows that the maximum relative error in testing different types of lines is 1.01%.

Funder

Research and development of new smart sensor technology to promote the development of green energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Synchronous Measurement Methods Based on Non-Contact Sensing;2024 IEEE 2nd International Conference on Power Science and Technology (ICPST);2024-05-09

2. Transmission Line Voltage Measurement Utilizing a Calibrated Suspension Grounding Voltage Sensor;Sensors;2023-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3