Performance Study on Brackish Water Desalination Efficiency Based on a Novel Coupled Electrodialysis–Reverse Osmosis (EDRO) System

Author:

Fu Caixia1ORCID,Li Fujun2,Li Hui3,Yi Xuenong1

Affiliation:

1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Rizhao Architectural Design and Research Institute Co., Rizhao 276800, China

3. The Chemours Chemical (Shanghai) Co., Ltd., Shanghai 201204, China

Abstract

Reverse osmosis (RO) is a commonly used desalination technology, but due to high requirements concerning the quality of the feed water, there still exists permeate flux related to the operating conditions, and the solute removal rate is low. Electric fields have a facilitating effect on RO desalination performance. Previous studies have focused on investigating the combination of RO and electrodialysis (ED) processes separately, without directly exploiting their interactions. To address this issue, this study proposes a novel coupling device that combines both RO and ED technologies in a single unit and investigates their mutual enhancement effects on brackish water desalination. The results show that the coupled EDRO system can mutually enhance the performance of RO and ED processes. The permeate flux ratio of the RO membrane increased with increasing voltage, reaching a maximum value of 23.7% at a feed concentration of 10,000 mg/L. The solute rejection by the ion-exchange membrane also increased with increasing pressure, reaching a maximum value of 14.95% at the same feed concentration. In addition, the specific energy consumption of the coupled system was also reduced compared to a standalone operation, with maximum reductions of 9.5% and 19.2% for RO and 2.5% and 3.4% for ED at 5000 and 10,000 mg/L feed concentrations, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3