Abstract
In this paper, we demonstrate a fiber Bragg grating (FBG) with a wide range and a comb with continuous cladding mode resonances inscribed in non-photosensitive single mode fibers using a femtosecond laser and a phase mask. The FBG is inscribed in the core and cladding, exciting a series of cladding modes in transmission. The birefringence induced by this FBG structure offers significant polarization-dependence for cladding modes, thus allowing the vector fiber twist to be perceived. By measuring the peak-to-peak differential intensity of orthogonally polarized cladding mode resonances, the proposed sensor presents totally opposite intensity response in the anticlockwise direction for the torsion angle ranging from −45° to 45°. The cladding mode comb approximately covers wavelengths over the O-, E-, S-, and C-bands in transmission. The cutoff cladding mode of air can be observed in the spectrum. Thus, the sensible refractive index range is estimated to be from 1.00 to 1.44. Temperature responsivity of the grating is also characterized. The proposed device potentially provides new solutions to the various challenges of physical vector and bio-chemical parameters sensing.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献