Optimisation of Energy Use in Bioethanol Production Using a Control Algorithm

Author:

Knaga Jarosław,Lis StanisławORCID,Kurpaska Sławomir,Łyszczarz Piotr,Tomasik Marcin

Abstract

In this work, the possibility of limiting energy consumption in the manufacturing process of bioethanol to obtain biofuel was analysed. For this purpose, a control algorithm has been optimised while retaining the good quality of the control signals. New in this study is the correlation of the control algorithm not only with the signal’s quality, but also with the energy consumption in such an energy-intensive process as rectification. The rectification process in a periodic production system has been researched. The process was modelled on a test station with the distillation mixture capacity of 25 dm3. For the optimization, the following control algorithms have been applied: relay, PID and PID after modification to I-PD. The simulation was carried out on a transfer function model of the plant that has been verified on a real object, a rectification column. The simulations of energy consumption and control signal’s quality have been carried out in the Matlab®-Simulink environment after implementing the model of the research subject and control algorithms. In the simulation process, an interference signal with an amplitude of 3% and frequency of 2 mHz was used. The executed analyses of the control signal quality and the influence of the control algorithm on the energy consumption has shown some essential mutual relationships. The lowest energy consumption in the rectification process can be achieved using the I-PD controller—however, the signal quality deteriorates. The energy savings are slightly lower while using the PID controller, but the control signal quality improves significantly. From a practical point of view, in the considered problem the best control solution is the classic PID controller—the obtained energy effect was only slightly lower while retaining the good quality of the control signals.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. Production and consumption of renewable energy in Poland with a special regard to agriculture;Pawlak;Probl. Inż. Rol.,2016

2. Economic and Ecological Aspects of the Production of Liquid Biofuels;Żołądkiewicz;Rocz. Nauk. Stowarzyszenia Ekon. Rol. I Agrobiz.,2016

3. Deposit Formation of Flex Fuel Engines Operated on Ethanol and Gasoline Blends

4. Process integration study of a kraft pulp mill converted to an ethanol production plant – Part A: Potential for heat integration of thermal separation units

5. Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3