Seasonal and Site-Specific Patterns of Airborne Fungal Diversity Revealed Using Passive Spore Traps and High-Throughput DNA Sequencing

Author:

Marčiulynas Adas1ORCID,Lynikienė Jūratė1,Marčiulynienė Diana1,Gedminas Artūras1,Menkis Audrius2ORCID

Affiliation:

1. Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, LT-53101 Kaunas, Lithuania

2. Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007 Uppsala, Sweden

Abstract

The aim of the present work was to study seasonal and site-specific patterns of airborne fungal diversity, focusing on plant pathogens. The sampling of fungal spores was carried out for twelve months, i.e., between September 2017 and August 2018, using passive spore traps that were placed at three different sites in western (Lenkimai), central (Dubrava), and eastern (Labanoras) Lithuania. Samples were collected every 7–10 days, resulting in 146 samples altogether. Following DNA isolation, samples were individually amplified using ITS2 rRNA as a marker and subjected to high-throughput sequencing. Clustering and taxonomic classification of 283,006 high-quality reads showed the presence of 805 non-singleton fungal taxa. The detected fungi were 53.4% Ascomycota, 46.5% Basidiomycota, and 0.1% Mucoromycota. The most common fungal taxon at Labanoras and Lenkimai was Hannaella coprosmae (23.2% and 24.3% of all high-quality fungal sequences, respectively), while at Dubrava it was Cladosporium macrocarpum (16.0%). In different sites, plant pathogenic fungi constituted between 1.6% and 14.6% of all fungal taxa and among these the most common were Protomyces inouyei (4.6%) and Sydowia polyspora (1.9%). The results demonstrated that the diversity of airborne fungi was mainly determined by the surrounding vegetation and climatic factors, while the occurrence of pathogenic fungi was affected by the availability of their hosts.

Funder

Research Council of Lithuania

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3