Abstract
Poplar, as the most widely cultivated fast-growing tree species in the middle latitude plain, provides important wood resources and plays an important role in mitigating climate change. In order to understand the response of growth, biomass production, carbon storage to poplar clones, planting spacings, and their interaction, a field trial was established in 2007. In 2018, we destructively harvested 24 sample trees for biomass measurements and stem analyses. Biomass production and carbon storage for the single tree of three clones enhanced as planting spacing increasing at the age of 13, but both the biomass production and carbon storage of clones NL-895 and NL-95 were higher than the clone NL-797 at the spacings of 6 × 6 m and 5 × 5 m. The average carbon concentration of the tested clones was in the order of stem > branches > leaves, and showed significant variation between different components (p < 0.05). Large spacing stimulated more biomass to be partitioned to the canopy. Based on the prediction values of tree volume growth by established Chapman–Richards models, the quantitative maturity ages of stand volume varied among the investigating plantations, ranging from 14 to 17 years old. Our results suggest that the selecting clones NL-895 and NL-95 with 6 × 6 m spacing would be recommended at similar sites for future poplar silviculture of larger diameter timber production, as well as for carbon sequestration.
Funder
the National Key Research and Development Project
Reference57 articles.
1. Assessment of Industrial Roundwood Production from Planted Forests;Jürgensen,2014
2. Measuring carbon in forests: current status and future challenges
3. National Forest Resources Statistics-Main Results of the Eighth National Forest Resources Inventory in China,2015
4. National Forestry and Grassland Development Statistical Bullet in 2018,2019
5. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献