Glacial Lake Changes and Risk Assessment in Rongxer Watershed of China–Nepal Economic Corridor

Author:

Zhang Sihui12,Nie Yong13ORCID,Zhang Huayu13

Affiliation:

1. Mountain Science Data Center, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China

2. The Faculty of Geography and Resource Sciences, Sichuan Normal University, Chengdu 610101, China

3. University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Glacial lake outburst floods (GLOFs) are one of the most severe disasters in alpine regions, releasing a large amount of water and sediment that can cause fatalities and economic loss as well as substantial damage to downstream infrastructures. The risk of GLOFs in the Himalayas is exacerbated by glacier retreat caused by global warming. Critical economic corridors, such as the Rongxer Watershed, are threatened by GLOFs, but the lack of risk assessment specific to the watershed hinders hazard prevention. In this study, we propose a novel model to evaluate the risk of GLOF using a combination of remote sensing observations, GIS, and hydrological models and apply this model to the GLOF risk assessment in the Rongxer Watershed. The results show that (1) the area of glacial lakes in the Rongxer Watershed increased by 31.19% from 11.35 km2 in 1990 to 14.89 km2 in 2020, and (2) 18 lakes were identified as potentially dangerous glacial lakes (PDGLs) that need to be assessed for the GLOF risk, and two of them were categorized as very high risk (Niangzongmajue and Tsho Rolpa). The proposed model was robust in a GLOF risk evaluation by historical GLOFs in the Himalayas. The glacial lake data and GLOF risk assessment model of this study have the potential to be widely used in research on the relationships between glacial lakes and climate change, as well as in disaster mitigation of GLOFs.

Funder

the Science and Technology Department of Tibet

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3