Location of Railway Emergency Rescue Spots Based on a Near-Full Covering Problem: From a Perspective of Diverse Scenarios

Author:

Wang Huizhu1,Zhou Jianqin1

Affiliation:

1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

Abstract

The location of railway emergency rescue spots is facing diverse scenarios including the location of new facilities and optimization of existing layouts with limited or non-limited conditions. Generally there will be heavily redundant covering ability if all the edge demands on a network are fully covered. Here, we first proposed a near-full covering model to balance investment in the facility and the actual coverage rate, and successfully applied this model in the optimal location of railway emergency rescue spots under diverse scenarios. We also developed a feasible solution that can select an effective algorithm or a greedy algorithm based on the total consumed time. With the constraint of a fixed coverage rate threshold, a larger coverage radius may lead to fewer facilities and higher relative redundancy. Flexible designs of the important node set where all the elements must be selected and the exclusive node set where all the elements cannot be selected are carried out to construct several scenarios. The comparative analysis shows that the optimal solution is an obvious improvement on the existing emergency rescue spot layout in the real railway network. This study provides an alternative version of the edge covering problem, and shows a successful application in the location problem of railway rescue spots.

Funder

Fundamental Research Funds of China for the Central University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3