Investigation of Viscoelastic Properties of Polymer-Modified Asphalt at Low Temperature Based on Gray Relational Analysis

Author:

Huang Zhongcai1,Lu Rong2ORCID,Fu Zhiyu2,Li Jingxiao2,Li Pengfei2,Wang Di3ORCID,Wei Ben1,Zhu Weining1,Wang Zujian1,Wang Xinyu1

Affiliation:

1. Guangxi Communications Investment Group Corporation Ltd., Nanning 530022, China

2. School of Highway, Chang’an University, Xi’an 710064, China

3. Department of Civil Engineering, Aalto University, 02150 Espoo, Finland

Abstract

As the investigation indexes of low-temperature viscoelastic properties of polymer-modified asphalt (PMA) are unclear at present, in this paper, the creep stiffness (S), creep rate (m), low-temperature continuous classification temperature (TC), ΔTC, m/S, relaxation time (λ), and dissipation energy ratio (Wdt/Wst) were taken as a comparison sequence. The maximum flexural tensile strain (εB) of porous asphalt mixture (PAM) in a low-temperature bending test was selected as a reference sequence. Gray relational analysis was used to investigate the PMA’s low-temperature viscoelastic properties based on a bending beam rheometer (BBR). The results show certain contradictions in investigating the low-temperature properties of PMA when only considering the low-temperature deformation capacity or the stress relaxation capacity. The modulus and relaxation capacity should be considered when selecting the investigation indexes of the low-temperature viscoelastic properties of PMA. When rheological method is used to evaluate the low-temperature of polymer modified asphalt, TC and m/S are preferred. When only S or m is contradictory, m should be preferred. ΔTC can determine whether the low-temperature performance of PMA is dominated by S or m. The result can better guide the construction of asphalt pavement in areas with low temperatures. Asphalt can be selected quickly and accurately to avoid the waste of resources.

Funder

Scientific and Technological Development Project of Guangxi Communications Investment Group Corporation Ltd.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3