Insights into the Effects of CeO2 Nanoparticles on Medium-Chain Carboxylates Production from Waste Activated Sludge

Author:

Sun Huanqing1,Liu Chao2,Ren Shanshan3,Liang Kuijing1,Zhang Zhiqiang1,Su Changqing1,Pei Sujian1,Usman Muhammad4ORCID

Affiliation:

1. Department of Biology, Hengshui Univerty, Hengshui 053000, China

2. National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China

3. Credit Card Center, Postal Savings Bank of China, Beijing 100029, China

4. 7-351 Donadeo Innovation Centre for Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

The synthesis of medium-chain carboxylates (MCCs) from waste-activated sludge (WAS) upgrading has received considerable attention. However, limited research has been conducted on the effects of CeO2 nanoparticles (NPs) on this process. This study showed that 1 mg/g−TS of CeO2 NPs improved the solubilization of WAS, resulting in higher production of MCCs. At 5 mg/g−TS, CeO2 NPs weakly inhibited 3 biological steps. Despite this, there was an enhancement in WAS solubilization, thus the overall production of MCCs was similar to the control. However, doses of CeO2 NPs ranging from 25–100 mg/g−TS were unable to offset biological inhibition, leading to a decrease in MCC production. The toxic mechanisms involved were not the generation of reactive oxygen species or Ce ions from CeO2 NPs to anaerobic sludge, but instead the decline of extracellular polymeric substance (EPS) and destruction of the cell membrane through physical penetration. Microbial community analysis confirmed that 1 mg/g−TS of CeO2 NPs increased the relative abundance of key bacteria involved in the anaerobic fermentation of WAS. The MCC microbe Clostridium sensu stricto was enriched in the control group, while the relative abundance of this genus was significantly reduced with 100 mg/g−TS CeO2 NPs.

Funder

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3