The Transient Unloading Response of a Deep-Buried Single Fracture Tunnel Based on the Particle Flow Method

Author:

Liu Xiqi1ORCID,Wang Gang12,Wen Zhijie3,Wang Dongxing1ORCID,Song Leibo2,Lin Manqing4,Chen Hao2

Affiliation:

1. Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, School of Civil Engineering, Wuhan University, Wuhan 430070, China

2. Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province, Shaoxing University, Shaoxing 312000, China

3. State Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Ministry of Education, Qingdao 266590, China

4. School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan 430070, China

Abstract

Particle flow numerical simulation was used to reproduce the transient unloading process of a deep-buried single fracture tunnel. The influence of fracture characteristics on the transient unloading effect was analyzed from the aspects of stress state, deformation characteristics, fracture propagation, and energy conversion. The results shows that the surrounding rock stress field of the deep-buried tunnel is divided into four areas: weak stress area I, strong stress area II, stress adjustment area III, and initial stress area IV. The fracture has an important impact on the stress adjustment process of transient unloading of the deep-buried tunnel, and the stress concentration area will be transferred from the bottom corner of the chamber and the vault to the fracture tip. With the increase in the fracture length, the distance from the stress concentration area at the fracture tip to the free surface gradually increases, and the damage area of the surrounding rock gradually migrates to the deep area of the rock mass. At this time, the release amount of strain energy gradually decreases and tends to be stable, while the dissipation energy shows a near ‘U’ shape change trend of decreasing first and then increasing. Under different fracture angles, the number of mesocracks is significantly different. Among them, the number of mesocracks in the 60° and 30° fractured surrounding rocks is greater followed by the 0° fractured surrounding rock, and the number of mesocracks in the 45° and 90° fractured surrounding rocks is relatively less. In addition, the proportion of compression-shear cracks shows a change trend of increasing first and then decreasing with the increase in the fracture angle, and it reaches the maximum value in the 45° fractured surrounding rock.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province

State Key Laboratory of Mining Disaster Prevention and Control (Shandong University of Science and Technology), Ministry of Education

Shaoxing Science and Technology Plan Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3