Effect of the 5-HT2C Receptor Agonist WAY-163909 on Serotonin and Dopamine Metabolism across the Rat Brain: A Quantitative and Qualitative Neurochemical Study

Author:

Whitestone Sara,De Deurwaerdère PhilippeORCID,Baassiri Lynn,Manem Julien,Anouar Youssef,Di Giovanni GiuseppeORCID,Bharatiya RahulORCID,Chagraoui Abdeslam

Abstract

The effects triggered by serotonin2C (5-hydroxytryptamin2C, 5-HT2C) receptor agonists in the brain are often subtle, and methodologies highlighting their widespread actions to account for their multiple modulatory influences on behaviors are still lacking. We report an extended analysis of a neurochemical database on monoamines obtained after the intraperitoneal administration of the preferential 5-HT2C receptor agonist WAY-163909 (0.3 and 3 mg/kg) in 29 distinct rat brain regions. We focused on the metabolite of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), the metabolites of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the index of the turnovers 5-HIAA/5-HT and DOPAC/DA. WAY-163909 increased and decreased 5-HIAA tissue levels in the amygdala and dorsolateral orbitofrontal cortex, respectively, and decreased the 5-HT turnover in the infralimbic cortex. It enhanced HVA levels in the medial orbitofrontal cortex and DOPAC levels in the amygdala. WAY-163909 increased and decreased DA turnover in the medial orbitofrontal cortex and the anterior insular cortex, respectively. The correlative analysis of the turnovers between pairs of brain regions revealed low levels of correlations across the brain but presented a distinct pattern of correlations after WAY-163909 was compared to saline-treated rats. WAY-163909, notably at 0.3 mg/kg, favored cortico-cortical and cortico-subcortical correlations of both turnovers separately, and frontal DOPAC/DA ratio with cortical and subcortical 5-HIAA/5-HT ratios at 3 mg/kg. In conclusion, the qualitative, but not the quantitative analysis shows that WAY-163909 alters the pattern of correlations across the brain, which could account for its multiple behavioral influences.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3