Abstract
The chemotactic sensory system enables motile bacteria to move toward favorable environments. Throughout bacterial diversity, the chemoreceptors that mediate chemotaxis are clustered into densely packed arrays of signaling complexes. In these arrays, rod-shaped receptors are in close proximity, resulting in limited options for orientations. A recent geometric analysis of these limitations in Escherichia coli, using published dimensions and angles, revealed that in this species, straight chemoreceptors would not fit into the available space, but receptors bent at one or both of the recently-documented flexible hinges would fit, albeit over a narrow window of shallow bend angles. We have now expanded our geometric analysis to consider variations in receptor length, orientation and placement, and thus to species in which those parameters are known to be, or might be, different, as well as to the possibility of dynamic variation in those parameters. The results identified significant limitations on the allowed combinations of chemoreceptor dimensions, orientations and placement. For most combinations, these limitations excluded straight chemoreceptors, but allowed receptors bent at a flexible hinge. Thus, our analysis identifies across bacterial diversity a crucial role for chemoreceptor flexible hinges, in accommodating the limitations of molecular crowding in chemotaxis core signaling complexes and their arrays.
Funder
National Institute of General Medical Sciences
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献