Abstract
Acteoside, an active phenylethanoid glycoside compound isolated from herbs of Cistanche, was chosen for the investigation of anti-osteoporotic effect on postmenopausal osteoporosis by using an ovariectomized (OVX) mice model. The results from in vivo experiments showed that after daily oral administration of acteoside (20, 40, and 80 mg/kg body weight/day) for 12 weeks, bone mineral density and bone biomechanical properties of OVX mice were greatly enhanced, with significant improvement in bone microarchitecture. Furthermore, biochemical parameters of bone resorption markers as well as bone formation index, including tartrate-resistant acid phosphatase, cathepsin K, deoxypyridinoline, alkaline phosphatase, and bone gla-protein, were ameliorated by acteoside treatment, whereas the body, uterus, and vagina wet weights were seemingly not impacted by acteoside administration. Acteoside significantly affected osteoclastogenesis by attenuating nuclear factor kappa B (NF-κB) and stimulating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathways through down-regulated levels of tumor-necrosis factor receptor-associated factor 6 (TRAF6), receptor activator of nuclear factor kappa B ligand (RANKL), RANK, NFKBIA, IκB kinase β, nuclear factor of activated T-cells c2 (NFAT2), and up-regulated expressions of PI3K, AKT, and c-Fos. Accordingly, the current research validated our hypothesis that acteoside possesses potent anti-osteoporotic properties and may be a promising agent for the prevention of osteoporosis in the future.
Funder
National Natural Science Foundation of China
Science Technology Foundation of Higher Education of Ningxia
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献