Informing Sustainable Forest Management: Remote Sensing Strategies for Assessing Soil Disturbance after Wildfire and Salvage Logging

Author:

Lewis Sarah A.1,Robichaud Peter R.1,Archer Vince A.2,Hudak Andrew T.1ORCID,Eitel Jan U. H.3,Strand Eva K.3ORCID

Affiliation:

1. Rocky Mountain Research Station, USDA Forest Service, Moscow, ID 83843, USA

2. Lolo National Forest, USDA Forest Service, Missoula, MT 59804, USA

3. College of Natural Resources, University of Idaho, Moscow, ID 83843, USA

Abstract

Wildfires have nearly become a guaranteed annual event in most western National Forests. Severe fire effects can be mitigated with a goal of minimizing the hydrologic response and promoting soil and vegetation recovery towards the pre-disturbance condition. Sometimes, post-fire actions include salvage logging to recover timber value and to remove excess fuels. Salvage logging was conducted after three large wildfires on the Lolo National Forest in Montana, USA, between 2017 and 2019. We evaluated detrimental soil disturbance (DSD) on seven units that were burned at low, moderate, and high soil burn severity in 2022, three to five years after the logging occurred. We found a range of exposed soil of 5%–25% and DSD from 3% to 20%, and these values were significantly correlated at r = 0.88. Very-high-resolution WorldView-2 imagery that coincided with the field campaign was used to calculate Normal Differenced Vegetation Index (NDVI) across the salvaged areas; we found that NDVI values were significantly correlated to DSD at r = 0.87. We were able to further examine this relationship and determined NDVI threshold values that corresponded to high-DSD areas, as well as develop a model to estimate the contributions of equipment type, seasonality, topography, and burn severity to DSD. A decision-making tool which combines these factors and NDVI is presented to support land managers in planning, evaluating, and monitoring disturbance from post-fire salvage logging.

Funder

USDA Forest Service, Lolo National Forest, Region 1

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3