Prototype Regularized Manifold Regularization Technique for Semi-Supervised Online Extreme Learning Machine

Author:

Muhammad Zaly Shah Muhammad Zafran,Zainal AnazidaORCID,Ghaleb Fuad A.ORCID,Al-Qarafi Abdulrahman,Saeed FaisalORCID

Abstract

Data streaming applications such as the Internet of Things (IoT) require processing or predicting from sequential data from various sensors. However, most of the data are unlabeled, making applying fully supervised learning algorithms impossible. The online manifold regularization approach allows sequential learning from partially labeled data, which is useful for sequential learning in environments with scarcely labeled data. Unfortunately, the manifold regularization technique does not work out of the box as it requires determining the radial basis function (RBF) kernel width parameter. The RBF kernel width parameter directly impacts the performance as it is used to inform the model to which class each piece of data most likely belongs. The width parameter is often determined off-line via hyperparameter search, where a vast amount of labeled data is required. Therefore, it limits its utility in applications where it is difficult to collect a great deal of labeled data, such as data stream mining. To address this issue, we proposed eliminating the RBF kernel from the manifold regularization technique altogether by combining the manifold regularization technique with a prototype learning method, which uses a finite set of prototypes to approximate the entire data set. Compared to other manifold regularization approaches, this approach instead queries the prototype-based learner to find the most similar samples for each sample instead of relying on the RBF kernel. Thus, it no longer necessitates the RBF kernel, which improves its practicality. The proposed approach can learn faster and achieve a higher classification performance than other manifold regularization techniques based on experiments on benchmark data sets. Results showed that the proposed approach can perform well even without using the RBF kernel, which improves the practicality of manifold regularization techniques for semi-supervised learning.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3