Pedestrian Traffic Light Control with Crosswalk FMCW Radar and Group Tracking Algorithm

Author:

Nimac PeterORCID,Krpič Andrej,Batagelj BoštjanORCID,Gams AndrejORCID

Abstract

The increased mobility requirements of modern lifestyles put more stress on existing traffic infrastructure, which causes reduced traffic flow, especially in peak traffic hours. This calls for new and advanced solutions in traffic flow regulation and management. One approach towards optimisation is a transition from static to dynamic traffic light intervals, especially in spots where pedestrian crossing cause stops in road traffic flow. In this paper, we propose a smart pedestrian traffic light triggering mechanism that uses a Frequency-modulated continuous-wave (FMCW) radar for pedestrian detection. Compared to, for example, camera-surveillance systems, radars have advantages in the ability to reliably detect pedestrians in low-visibility conditions and in maintaining privacy. Objects within a radar’s detection range are represented in a point cloud structure, in which pedestrians form clusters where they lose all identifiable features. Pedestrian detection and tracking are completed with a group tracking (GTRACK) algorithm that we modified to run on an external processor and not integrated into the used FMCW radar itself. The proposed prototype has been tested in multiple scenarios, where we focused on removing the call button from a conventional pedestrian traffic light. The prototype responded correctly in practically all cases by triggering the change in traffic signalization only when pedestrians were standing in the pavement area directly in front of the zebra crossing.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3