Auto-Denoising for EEG Signals Using Generative Adversarial Network

Author:

An Yang,Lam Hak Keung,Ling Sai HoORCID

Abstract

The brain–computer interface (BCI) has many applications in various fields. In EEG-based research, an essential step is signal denoising. In this paper, a generative adversarial network (GAN)-based denoising method is proposed to denoise the multichannel EEG signal automatically. A new loss function is defined to ensure that the filtered signal can retain as much effective original information and energy as possible. This model can imitate and integrate artificial denoising methods, which reduces processing time; hence it can be used for a large amount of data processing. Compared to other neural network denoising models, the proposed model has one more discriminator, which always judges whether the noise is filtered out. The generator is constantly changing the denoising way. To ensure the GAN model generates EEG signals stably, a new normalization method called sample entropy threshold and energy threshold-based (SETET) normalization is proposed to check the abnormal signals and limit the range of EEG signals. After the denoising system is established, although the denoising model uses the different subjects’ data for training, it can still apply to the new subjects’ data denoising. The experiments discussed in this paper employ the HaLT public dataset. Correlation and root mean square error (RMSE) are used as evaluation criteria. Results reveal that the proposed automatic GAN denoising network achieves the same performance as the manual hybrid artificial denoising method. Moreover, the GAN network makes the denoising process automatic, representing a significant reduction in time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Denoising of EEG signals using wavelets and various thresholding techniques;Kumar;Int. J. Electron. Eng.,2019

2. EEG Signals Denoising Using Optimal Wavelet Transform Hybridized With Efficient Metaheuristic Methods

3. Denoising Nonlinear Time Series by Adaptive Filtering and Wavelet Shrinkage: A Comparison;Gao;IEEE Signal Processing Lett.,2010

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3